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ABSTRACT

An analysis is presented to determine the time variation of per-

turbing torques on a space station due to gravity gradient. It is

shown that the integrated angular impulse due to gravity gradient

on a typical space station exceeds the angular impulse required to

precess a spinning station at a rate of 360 ° per year as required

to maintain sun-orientation. If pulse rockets with a specific im-

pulse of 300 seconds were used, the propellant requirement is es-

timated to be 5880 lb/yr for gravity gradient as compared to 1350

Ib/yr for precession.
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I ANA LYSIS

We consider a space station with a major principal moment of inertia, Iz, ,

and equal minor principal moments of inertia Ix, and Iy, , which is contin-

ually stabilized so that its major principal axis of inertia points toward the

sun. The x' axis is perpendicular to the ecliptic plane and the y' axis lies kn

the ecliptic plane. For the moment we may neglect the spin of the station

about the z' axis and calculate the gravity gradient torques acting on the sta-

tion as a function of time. (The spin of the station must be considered to de-

termine the angular motions of the station in inertial space if the disturbing

gravity gradient torques are not continually counteracted, and also to de-

termine the magnitude and direction of the applied torque required to pre-

cess the spin axis 2 rT radians per year in inertial space to maintain sun -

orientation).

The origin of the x' , y' , z' coordinate system is taken as the center of gravity

of the earth. As shown in Figure l, we let R be the vector from the center
O

of the earth to the center of mass of the station, R, the vector frcm the center

of the earth to an elemental mass element, dm, of the station, and r, the vec-

tor from the center of mass of the station to the element, dm. Then the

gravity force on dm is:

i

= - GM dm R
d F'dm dm a - R2

(1)
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Where

or,

where

G

M

GM

go =

R =
O

universal constant of gravitation

mass of the earth

2

go Ro

acceleration due to gravity at earth's mean surface

earth's mean radius = 3960 statute miles.

The torque about the station center of mass due to the gravity force d Fdm

is:

- - GMdm (r x R-)
d J = r x d Fdm = R3

m

where r is the vector from the center of mass of the station to the element, din,

in a rotating orthogonal coordinate system x y z, with itsorigin at the station

center of mass and defined so that z is radial outward along the earth radius

vector, x is perpendicular to the orbit plane and y is in the orbit plane.

(2)

N

But, 1_ = R + r
o

The quantity (1/R 3) can be found from the law of cosines:

R 2 2 2= r +R - 2r " I_
0 0

R 3 2 - 3/2or, = (R - 2 r ff + r 2)
O O

(4)

(s)
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and

2 3/2
R3 = Ra(lo 27" if° 4r2 2 )

R R
O O

2 - 3/2

1 = I ( i_2r.____Rp + r___ )
R 3 R 3 R 2 R 2

O O O

(6)

(;3

Since
r

R
O

1, we expand the expression by the btmomial theorem

and retain only the first two terms:

I _ 1

R 3 R 3
O

( I+ 3r Ro
2 + "" )

R
O

Substituting in Equation (2) and replacing R by R :
O

d; = -GMdmr x l_ [ 1 (1+ 3r'Ro)]
o _"_ R _.

O O

or, ff ff _-

dT GMdm[ o o- O]= 3 Ro (rx R') + 3r " R- r XR--
R o o o

O

R

The vector-R--_ = k', is a unit vector along the z axis. Therefore, Equation
O

(I0)may be written in integral form:

J- - 3 :[Ro '-' r x kdm+3 r .k rxkdm
R Vol Vol

0

(8)

(9)

(lO)
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where the integrals are taken over the volume of the station. Since the origin

is taken at the center of mass, the first term integrates to zero.

m

We now express k with respect to the body axes x' y' z' :

: cos(k • i') i-' + cos(k •j') j' + cos(k .k')k' (12)

or,

where

k" = cos0 1i-' +cos9 2 ]-' + cos 83_'

=

(13)

(14)

and the angles are defined as follows:

O I

0 2

0 3

= angle between earth radius vector and body x' axis

= angle between earth radius vector and body ]?' axis

= angle between earth radius vector and body z' axis

m

Inserting the values of r and k in Equation (11), and introducing the assumption

that x' y' and z' are the principal axes of inertia:

3 GM _ x,2 y,2
J" = R 3 ( dm - _ dm)cos 01 cos 0 2 ,k'

O

,2 cos+ [( I z'2 dm -ix dm)cos01 03 j'j'

+[( ,_ y,2 dm- Ix '2 dm)cos0 2 cosO 3 li-' (15)
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or,

Jx' 3 GM i -_
= R 3 I I J cos 02 cos 0y z 3

O

(_6)

Jy' 3 I - I cos 01 cos 03
R z x

O

(17)

jz,= 3 GM
R 3 Ix Iy j cosO 1 cos 0 2

O

(18)

where Ix, I and I are the principal moments of inertia. Since we have assumedy z

that Ix, = Iy, , Equation (18) shows that there is no gravity gradient torque

around the z' (spin) axis which would tend to change the spin rate.

We now refer to Figure 2 which shows the relationship between the satellite orbit

plane, the earth's equatorial plane, and the ecliptic plane. Coordinates must be

transformed to express the angles 01 , 0 2, 0 3 as functions of time, t, taking into

account the earth's rotation around the sun, the inclination of the earth's axis to

the ecliptic plane, the inclination of the orbit to the equatorial plane, and the re-

gression of the line of nodes of the orbit due to the earth's oblateness.

We define:

i =
e

the angle of inclination of the orbital plane to the ecliptic plane

orbit inclination to the equatorial plane (30 °)

the angle between the spin axis (z' which points toward the sun)

and the intersection of the orbital plane with the ecliptic plane

angle between the line of nodes and the vernal equinox (in the

equatorial plane).
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where

where

Y

YO

PR

Yo +_t

value of ¥ for the first orbit after launching and ff is the

orbital regression rate due to earth's oblateness.

t
_= 2rr--

PR

regression period

(19)

We let:

angle between z' axis and vernal equinox on the date of launching

_2
t

!1, - 2 "H
ro 365

angle between z' axis and vernal equinox at time, t, (days)

after launching

(20)

0

angle between vernal equinox and the intersection of the

orbital plane with the ecliptic plane

tPl- + _P2 = ' +'jJ - 2" , o 365
1

angular position of satellite in its orbit, measured from the

ascending line of no_es.



To obtain an expression for the variation of torque with time, it is necessary

to define the angles O1, 0.2, and 03 of the Equations (16)and(17) in terms of _p

and y . This will be accomplished in two steps. First, applying the cosine law to

the spherical triangles indicated in Figure 2, the following relationships are obtained

for cos 01, cos 02, and cos 03 asa function of the angles _, _, andi:

cos 01 = sinisinO + cosicos Ocos90 ° (22)

cos 02 = cos 0sin _, +sinO cos _pcos i (23)

cos O3 = cos _b cos_J + sin @ sin _ cos (180 - i) (24)

Substituting these relations in Equations (16 and (17):

f

Jx' = 3 GM _/ 1 2 2
R 3 ( Iz' - Iy, ) L _ Lcos i (cos _p- sin q_) si_2_

O

2
+ sin 2 _h ( cos _ - cos (25)

jy, = + 3GM f 1 Is _sin2_
R 3 (Iz' - Ix' ) 2 inicos
0

(26)

The first term in each of the above expressions contains the factor sin 2 _. These

torque components will therefore be periodic at twice the orbital frequency. Since

the orbital period (of the order of 90 minutes) is much shorter than either the

earth's precession period about the sun (365 days) or the orbit regression period
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(47 days), both i and (p are essentially constant over half an orbital period.

Hence, this componentof torque averages to zero and may be counteracted by

a momentum-wheel or precessing gyro type of control device. However, the

secondterm in Equations (25) and(26) contains only sin 2 0 and cos 2 0. Over

one orbital period:

1
(sin2 _ )average = (c°s2_)average =

The cumulative gravity-gradient torques are therefore:

3 GM 2 .

Jx' = 3 (Iz, -Iy,)Sin ,sin2 [/J
4R

o

(26)

Jy,

3 GM

3
4R

O

(Iz, - Ix, ) sin 2 i sin <_ (27)

The variation of i and _ with time is obtained from the solution of the spherical

triangle shown in Figure 3. The following relationships are obtained:

cos i = 0.917 cosi - 0.398 sini cos y
eq eq

(28)

tan (_ 1

tan y

-0.917 +
(0.398) cot (ieq)

COS y

(29)
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As previously defined, the angle y consists of an initial value Yo and a periodic
componentdue to regression of the orbital plane _ . In general, the regression

rate for a circular orbit is given by:

6 (GM) 1/2 Re 2 _
= 5 R 7/2 } (0.0032) cOSieqSin 2_ i

o

where

R = earth's radius
e

(30)

(Reference: Thomson, Introduction to Space Dynamics, page 98)

As previously noted, the orbital period is much smaller than the orbit regression

period 2n/q and we may again take:

2 1
sin _ 2

Therefore:

= (0.00192) (GM)I/2 Re2

R 7/2
o

cos i
eq

(31)

To obtain an explicit expression for the variation of gravity-gradient torques

with time it would be necessary to combine Equations (26) and (27) with Equations

(28), (29) and(31). Also,

t
- 2_-- + qJ

--o 365 L
(32)
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Since such an explicit expression would only obscure the result, the evaluation

is best donein a step-wise manner. Specifically, it is most instructive to

consider the variation of sin2 i and sm 2 i separately from the terms sin 2 _.

and sin t_ in Equations (26) and (27). As will be shownbelow, the first

influence only the magnitudeof the torques, whereas the effect of the latter is

to establish their fundamental period.

From the geometry of the problem, and as is also shown by Equation (28), the

angle of the orbital plane to the ecliptic, i, will vary between the limits:

i - 23.5°v,-i<i + 23.5 °
eq eq

Since for the orbits to be considered here, the inclination will be larger than

23.5 °, the angle i is positive and both sin 2 i as well as sin 2 i will always be

positive. Hence, these terms are positive multipliers of the torque magnitude.

The numerical value of these multipliers changes with time and the variation is

periodic at a period given by 2n/ _ and 2(2n/ _).

The components of t/, given by Equations (32) and (29) are illustrated in Figure

4 (a). The angle _ 1 would be equal to y except for the distortion introduced

by the denominator of Equation (29). However, the distortion is periodic with

a period also given by 2 rT/ ,_ The total angle _ therefore has a funda-

mental period P_, , as shown in Figure 4 (b).

P (365)
r

Ptf = 365- P
r

(32)

(34)

where

P = 2 - / _,days
Y
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Assuming that the cumulative gravity gradient torques are continuously

counteracted by jet-reaction torques, the estimate of fuel requirements is made

by evaluating the area under the curves of Jx' (t) and ]y, (t) without regard to

sign. Since the distortion introduced by the _1 term is approximately symme-

trical over each half period, its effect upon the absolute value of the area under

the curve taken over a full period is negligible for estimating purposes. Hence,

the principal concern must be with the influence of the sin 2 i and sin 2 i terms.

The torque equations can therefore be written as:

3 2 _-t)
Jx' = 4R 3 (Iz, -Iy,) sin 1 sin 2(t_o+Yo +2rr P_

O

(35)

3 GM t

JY' = 4R 3 (Iz' -Ix' ) sin 2 isin(_o +Yo +2 rr
O

(36)
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II NUMERICAL ESTIMATES

The particular case for which cumulative gravity-gradient torques and the

corresponding fuel requirements have been estimated assumes the following orbit

and vehicle parameters:

Orbit inclination to equator, i
eq

Circular orbit altitude

Spin-axis moment of inertia, I
Z'

I x ,

= 30 °

= 300 nautical miles

= 1.5x107 slug-if2

=1.05x107 slug- ft 2
= Iy,

From Equation (30), the orbit regression rate

= 1.54 x 10-6

P = 47.3 days
¥

rad/sec

and regression period P are:
Y

The fundamental period of the cumulative gravity-gradient torques is computed

from Equation (34).

_ = 54.3 days

The cumulative torque expressions become:

Jx' 4.06 sm 2" t= - • 1 sin 2((_o + Yo + 2n 54.----_ (37)

t

Jy, = - 4.06 • sin 2i sin( -_o + ¥o + 2 n 54---_ (38)
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2
The principal difficulty in assigning a numerical value to sin i and sin 2 i

stems from the fact that (1) their period differs from the fundamental period

of _ 1 by a factor of about 2 (47.3 days compared with 27.2 days for Jx' and

23.6 days as compared with 54.3 days for Jy,); and (2) they are displaced by

a phase angle determined by the date and time-of-day of injection into orbit.

A typical curve is illustrated in Figure 5, based upon an arbitrary choice of

phase angles.

2
To estimate the extent to which the sin i and sin 2 i terms will reduce the

area under the curve, i .e., the accumulated angular momentum, these func-

tions are plotted in figure 6. It is thus seen that appropriate average values

for these functions might be:

( sin2 i)averag e _'_ 0.4

(sin 2 i)averag e _::_ 0.8

It is now possible to estimate fuel requirements for jet-reaction control of

the cumulative gravity gradient torques. We assume the following:

Nozzle moment arm

Spccific impulse

75 feet

300 seconds (for chemical rocket)

Hence, the weight of fuel, W, is given by:

-5
W = 4.44x10 Hlbs

where H is the accumulated angular momentum over the specified period of

time ( lb-ft-sec).
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Using the above average values for the functions of i, fuel requirements per

year are calculated from:

13.6 days
f

Wx' (4"44110-5) .1 2_27_ dtx(8 4 365= x (4.06)(0.4) sin . .64)(10 )(1-_--.6)

0

W
X'

W
y'

= 1,455 lbs per year

27.2 days

= (4.44x10-5)(4.06)(0.8). in 27 dt(8.64) (10") ( )

0

W
y'

4,425 lbs per year

If the x and y torques were compensated independently, the total propellant

censumption (for a specific impulse of 300 seconds) would be 5,880 lb/year.

For the assumed space station parameters and with a spin rate of 3 RPM,

the average torque required to precess the station at a rate of 360 ° per year

is 0.963 lb-ft.

The amount of chemical propellant required to produce this precession is calculated

to be only 1350 lb/year, as compared to approximately 5880 lb/year to compensate

for gravity gradient.
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